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1 Introduction

Finance is often described as the economy’s plumbing: when it works, funds reach productive
users quietly; when it fails, even good ideas struggle to get off the ground. A simple puzzle
follows. Many economies start with similar savings motives and similar technologies, yet
their financial systems—and therefore their growth paths—can diverge for long periods. One
economy gradually builds reliable intermediation, deeper markets, and better screening; another
remains stuck with thin intermediation, high per-unit costs, and fragile trust. This paper offers
a parsimonious mechanism for such divergence: when intermediation has fixed operating costs
and congestion costs, financial development can become self-reinforcing only after the system
reaches a critical mass.

The idea that finance shapes development is old, going back to (Goldsmith 1969, McKinnon
1973, Shaw 1973). Modern empirical work documents a strong association between financial
depth and long-run growth and its sources (King and Levine 1993, Levine 1997, Rajan and
Zingales 1998, Beck et al. 2000), while a large institutional literature stresses that contract
enforcement and investor protection are central to financial performance (La Porta et al. 1998,
Acemoglu et al. 2005). On the theory side, classic models link finance and growth through costly
intermediation and endogenous adoption of financial structures (Greenwood and Jovanovic 1990,
Bencivenga and Smith 1991). At the same time, recent evidence suggests nonlinearities: beyond
some point, finance can become less helpful or even harmful (Arcand et al. 2015, Cecchetti and
Kharroubi 2012).

Against this background, we develop a three-sector continuous-time general-equilibrium model
with households, producers, and financial intermediaries. Financial development is a stock
that raises allocative efficiency, but it is produced endogenously through intermediation activity,
entry, and learning. The model delivers multiple steady states: a low-finance trap, a high-finance
regime, and an unstable threshold separating them. The analysis yields three contributions. First,
it provides a clean state-variable representation of financial deepening that nests both “finance
helps growth” and threshold-style dynamics in one setup. Second, it shows how fixed operating
costs and congestion in intermediation generate multiplicity in a transparent way, with a simple
two-dimensional phase diagram. Third, it highlights policy levers with clear interpretation:
lowering operating costs, improving screening effectiveness, or raising the productivity of
deepening can eliminate the trap by shifting the deepening locus and making the high-finance
steady state globally attractive.

The remainder of the paper proceeds as follows. Section 2 presents the three-sector model and
defines equilibrium. Section 3 concludes.
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2 Model

This section builds a three-sector continuous-time general-equilibrium model—households, pro-
ducers, and financial intermediaries—with: i) endogenous financial deepening, ii) intermediary
entry with fixed operating costs, iii) screening effort and congestion in intermediation, and iv)
an explicit nonlinearity that delivers multiple steady states.

2.1 Set up

Time is continuous, 𝑡 ∈ [0,∞). The economy is closed. A single final good can be consumed
or invested. Population is normalized to one and supplies one unit of labor inelastically.1

There are three sectors: i) a representative household that chooses consumption and saving
dynamically; ii) a competitive final-good sector that uses effective capital to produce output;
and iii) a financial intermediation sector that screens and channels resources, and endogenously
accumulates a stock of “financial development” that improves allocative efficiency.

The representative household has CRRA utility over consumption:

max
{𝐶𝑡 }𝑡≥0

∫ ∞

0
𝑒−𝜌𝑡

𝐶
1−𝛾
𝑡 − 1
1 − 𝛾 𝑑𝑡, (1)

where 𝜌 > 0 is the subjective discount rate and 𝛾 > 0 is the inverse of the intertemporal elasticity
of substitution.

Let 𝐾𝑡 denote the economy-wide stock of physical capital owned by the household. Capital
depreciates at rate 𝛿 > 0. The household receives the rental return 𝑅𝑡 on capital and the wage 𝑤𝑡
from inelastic labor supply. The household also receives aggregate profits from intermediaries,
denoted Π𝑡 , which will be zero under free-entry/competition in the baseline equilibrium.

Household capital accumulation is:

¤𝐾𝑡 = 𝑌𝑡 − 𝐶𝑡 − C𝐹 (𝑁𝑡 , 𝑒𝑡 , 𝐹𝑡) − 𝛿𝐾𝑡 , (2)

where 𝑌𝑡 is aggregate output, and C𝐹 (·) is the real resource cost of running the financial system
(labor and goods absorbed by screening, operating costs, and intermediation frictions). The
term C𝐹 is the key channel through which finance both helps and (potentially) drags on the
economy: it raises efficiency via 𝐹𝑡 (defined below), but also uses resources.

1Extensions with population growth are straightforward and omitted for clarity.
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Let Λ𝑡 denote the costate variable on Equation (2). The household’s Hamiltonian is:

H𝑡 =
𝐶

1−𝛾
𝑡 − 1
1 − 𝛾 + Λ𝑡

(
𝑌𝑡 − 𝐶𝑡 − C𝐹 (𝑁𝑡 , 𝑒𝑡 , 𝐹𝑡) − 𝛿𝐾𝑡

)
. (3)

The first-order condition for consumption is:

𝜕H𝑡

𝜕𝐶𝑡
= 0 ⇒ 𝐶

−𝛾
𝑡 = Λ𝑡 . (4)

The costate equation is:

¤Λ𝑡 = 𝜌Λ𝑡 −
𝜕H𝑡

𝜕𝐾𝑡
= (𝜌 + 𝛿)Λ𝑡 − Λ𝑡

𝜕𝑌𝑡

𝜕𝐾𝑡
, (5)

where we use that 𝜕C𝐹/𝜕𝐾𝑡 = 0 (below we allow C𝐹 to depend on activity and thus indirectly
on 𝐾𝑡 through 𝑌𝑡 and 𝐶𝑡).

Combining Equation (4)–(5) yields the Euler equation:

¤𝐶𝑡
𝐶𝑡

=
1
𝛾

(
𝜕𝑌𝑡

𝜕𝐾𝑡
− 𝛿 − 𝜌

)
. (6)

Equation (6) matches the logic that consumption growth is pinned down by the net marginal
product of capital.

The final-good sector is competitive. Output is produced using capital, but the productivity of
capital depends on a stock of financial development 𝐹𝑡 :

𝑌𝑡 = 𝐴A(𝐹𝑡) 𝐾𝑡 , (7)

where 𝐴 > 0 is baseline productivity and A(𝐹) is an increasing, bounded efficiency term
capturing allocative efficiency, contract enforcement, information, and payment infrastructure.

A parsimonious functional form that is smooth, increasing, and saturating is:

A(𝐹) =
(

𝐹

𝐹̄ + 𝐹

)𝜗
, 𝐹̄ > 0, 𝜗 > 0. (8)

When 𝐹 ≪ 𝐹̄, efficiency is low and marginal improvements in 𝐹 can matter a lot; when 𝐹 is
very large, efficiency approaches one and gains taper off.

Under Equation (7), the marginal product of capital is:

𝜕𝑌𝑡

𝜕𝐾𝑡
= 𝐴A(𝐹𝑡). (9)
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With inelastic labor normalized to one, wages can be interpreted as a residual share if desired;
for the present purposes, Equation (9) is the key object because it enters Equation (6).

Substituting Equation (9) into Equation (6) delivers:

¤𝐶𝑡
𝐶𝑡

=
1
𝛾
(𝐴A(𝐹𝑡) − 𝛿 − 𝜌) . (10)

Hence, financial development affects intertemporal decisions by shifting the effective return to
saving.

The financial sector is modelled as an industry with 𝑁𝑡 ≥ 0 active intermediaries at time 𝑡.
Intermediaries provide screening/monitoring and payment/verification services. These services
i) absorb resources today but ii) raise the stock 𝐹𝑡 that improves allocative efficiency in Equation
(7).

Let 𝑒𝑡 ≥ 0 denote average screening/monitoring intensity per intermediary. The financial sector
absorbs real resources according to:

C𝐹 (𝑁𝑡 , 𝑒𝑡 , 𝐹𝑡) = 𝑓 𝑁𝑡︸︷︷︸
fixed operating cost

+ 𝜅

2
𝑒2
𝑡 S𝑡︸  ︷︷  ︸

screening cost

+ 𝜒Φ

(
S𝑡

𝑁𝑡 + 𝑁

)
S𝑡︸               ︷︷               ︸

congestion / misallocation loss

, (11)

where 𝑓 > 0 is a fixed operating cost per intermediary (branches, compliance, IT overhead);
𝜅 > 0 scales the marginal cost of screening intensity; S𝑡 is the scale of financial activity to be
intermediated. A natural object is gross saving/investment resources, S𝑡 ≡ 𝑌𝑡−𝐶𝑡 , i.e., resources
not consumed are the flow that must be allocated across projects and firms. 𝑁 > 0 prevents
singularity at 𝑁𝑡 = 0 and captures that some basic “backbone” (courts, registry) may exist even
with few intermediaries; and Φ(·) captures congestion: intermediating a given scale with few
intermediaries raises per-intermediary load and worsens screening/verification quality.

A tractable congestion function is:

Φ(𝑥) = 𝑥𝜈, 𝜈 > 0. (12)

Then the congestion term in Equation (11) scales like S1+𝜈
𝑡 /(𝑁𝑡 + 𝑁)𝜈.

Financial development 𝐹𝑡 evolves with experience and infrastructure investment. It rises with
intermediation scale and with the number of active intermediaries (entry and competition bring
new technologies and networks), but depreciates as institutions and systems become obsolete:

¤𝐹𝑡 = 𝜉
(

𝑁𝑡

𝑁𝑡 + 𝑁̄

)𝜔 (
S𝑡
𝑌𝑡

)𝜓
𝐹𝑡

(
1 − 𝐹𝑡

𝐹max

)
− 𝛿𝐹𝐹𝑡 , (13)
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where 𝜉 > 0 is the speed of financial deepening (how quickly learning-by-doing and infrastruc-
ture translate into higher 𝐹); 𝑁̄ > 0 normalizes how rapidly the “competition/network” channel
saturates; 𝜔 > 0 governs how strongly entry and network size matter for deepening; 𝜓 > 0
governs how strongly the saving rate (intermediation intensity) fuels deepening; 𝐹max > 0 is
an upper bound, introducing a natural saturation effect; and 𝛿𝐹 > 0 is institutional depreciation
(obsolescence, erosion of trust, regulatory decay).

Two features of Equation (13) are important for multiplicity. First, deepening is state-dependent
via 𝐹𝑡 (1 − 𝐹𝑡/𝐹max), so very low 𝐹 is hard to escape. Second, deepening depends on the
endogenous choice/entry 𝑁𝑡 and on the endogenous saving rate S𝑡/𝑌𝑡 .

To close the model, 𝑁𝑡 is determined endogenously. A simple and empirically plausible closure
is free entry with zero expected profits. Rather than modelling the full pricing problem (which
is not needed for the core multiplicity mechanism), we represent the gross revenue generated by
intermediation as proportional to the scale of intermediated funds and increasing in 𝐹𝑡 :

R𝑡 = 𝜇B(𝐹𝑡) S𝑡 , 𝜇 > 0, (14)

with B(𝐹) increasing and bounded, for example

B(𝐹) =
(

𝐹

𝐹̄ + 𝐹

)𝜂
, 𝜂 > 0. (15)

The interpretation is that when 𝐹 is low, contracts are hard to enforce and informational frictions
are large; intermediated flows generate limited effective revenue and fee base. When 𝐹 is high,
the system is more reliable, and intermediation activity generates a larger feasible fee base (more
transactions, better recoveries, more scalable services).

Under free entry, aggregate revenue (14) is dissipated into operating and screening costs. A
reduced-form zero-profit condition is:

R𝑡 = C𝐹 (𝑁𝑡 , 𝑒𝑡 , 𝐹𝑡). (16)

Using Equation (11)–(14), entry pins down 𝑁𝑡 implicitly as a function of (𝐾𝑡 , 𝐶𝑡 , 𝐹𝑡 , 𝑒𝑡).

Effort 𝑒𝑡 can be taken as a policy/institutional choice (regulatory intensity) or as an industry
choice. A convenient closure is that 𝑒𝑡 is chosen to minimize per-unit intermediation losses,
trading off screening cost against congestion losses. Formally, given (𝑁𝑡 , 𝐹𝑡) and S𝑡 , choose 𝑒𝑡
to minimize the variable part of Equation (11):

min
𝑒𝑡≥0

𝜅

2
𝑒2
𝑡 S𝑡 + 𝜒

(
S𝑡

𝑁𝑡 + 𝑁

)𝜈
S𝑡 , (17)
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which implies 𝑒★𝑡 = 0 in this stripped-down form (because congestion losses do not depend on
𝑒𝑡 directly). To make effort meaningful, allow effort to reduce effective congestion:

Φ

(
S𝑡

𝑁𝑡 + 𝑁

)
=

(
S𝑡

𝑁𝑡 + 𝑁

)𝜈
exp(−𝜁𝑒𝑡), 𝜁 > 0. (18)

Then the effort FOC yields an interior solution:

𝜅𝑒𝑡 = 𝜒 𝜁

(
S𝑡

𝑁𝑡 + 𝑁

)𝜈
exp(−𝜁𝑒𝑡), (19)

which has a unique solution because the LHS is increasing in 𝑒𝑡 and the RHS is decreasing in
𝑒𝑡 . Equation (19) captures that: i) larger scale S𝑡 raises the marginal benefit of monitoring, ii)
more intermediaries (larger 𝑁𝑡) reduces load and thus reduces the need for very high effort, and
iii) the parameter 𝜁 governs how effective monitoring is at mitigating misallocation.

In what follows, we take 𝑒𝑡 = 𝑒★(S𝑡 , 𝑁𝑡) as implicitly defined by Equation (19).

2.2 Competitive equilibrium

A competitive equilibrium is a set of allocations and prices

{𝐶𝑡 , 𝐾𝑡 , 𝑌𝑡 , 𝐹𝑡 , 𝑁𝑡 , 𝑒𝑡 , 𝑅𝑡 , 𝑤𝑡}𝑡≥0

such that i) given prices and laws of motion, the household maximizes Equation (1) subject
to Equation (2), implying the Euler equation (10) and transversality; ii) the production sector
satisfies Equation (7)–(9); iii) financial development evolves according to Equation (13); iv)
intermediary entry satisfies Equation (16), with effort satisfying Equation (19); and v) goods
market clearing holds by construction in Equation (2) with S𝑡 = 𝑌𝑡 − 𝐶𝑡 .

2.3 Reduced system and multiple steady states

Because 𝑌𝑡 is linear in 𝐾𝑡 in Equation (7), it is convenient to work with the consumption-capital
ratio

𝑥𝑡 ≡
𝐶𝑡

𝐾𝑡
. (20)

Using Equation (7), output per unit of capital is:

𝑌𝑡

𝐾𝑡
= 𝐴A(𝐹𝑡). (21)
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The saving flow per unit of capital is:

S𝑡
𝐾𝑡

=
𝑌𝑡 − 𝐶𝑡
𝐾𝑡

= 𝐴A(𝐹𝑡) − 𝑥𝑡 . (22)

Dynamics of 𝑥𝑡 . Differentiate 𝑥𝑡 = 𝐶𝑡/𝐾𝑡 :

¤𝑥𝑡
𝑥𝑡

=
¤𝐶𝑡
𝐶𝑡

−
¤𝐾𝑡
𝐾𝑡
. (23)

From Equation (10),
¤𝐶𝑡
𝐶𝑡

=
1
𝛾
(𝐴A(𝐹𝑡) − 𝛿 − 𝜌) . (24)

From Equations (2) and (21),

¤𝐾𝑡
𝐾𝑡

= 𝐴A(𝐹𝑡) − 𝑥𝑡 −
C𝐹 (𝑁𝑡 , 𝑒𝑡 , 𝐹𝑡)

𝐾𝑡
− 𝛿. (25)

Hence,

¤𝑥𝑡 = 𝑥𝑡
[

1
𝛾
(𝐴A(𝐹𝑡) − 𝛿 − 𝜌) −

(
𝐴A(𝐹𝑡) − 𝑥𝑡 −

C𝐹 (𝑁𝑡 , 𝑒𝑡 , 𝐹𝑡)
𝐾𝑡

− 𝛿
)]
. (26)

Dynamics of 𝐹𝑡 . Using Equation (13) and S𝑡/𝑌𝑡 = 1 − 𝐶𝑡/𝑌𝑡 = 1 − 𝑥𝑡
𝐴A(𝐹𝑡 ) , we obtain:

¤𝐹𝑡 = 𝜉
(

𝑁𝑡

𝑁𝑡 + 𝑁̄

)𝜔 (
1 − 𝑥𝑡

𝐴A(𝐹𝑡)

)𝜓
𝐹𝑡

(
1 − 𝐹𝑡

𝐹max

)
− 𝛿𝐹𝐹𝑡 . (27)

Finally, 𝑁𝑡 is pinned down by the entry condition (16), where revenue depends on (𝐹𝑡 , 𝑥𝑡 , 𝐾𝑡)
via Equation (14) and costs depend on (𝑁𝑡 , 𝑒𝑡 , 𝐹𝑡) via Equation (11), with effort 𝑒𝑡 = 𝑒★(S𝑡 , 𝑁𝑡)
from Equation (19). This is the source of strong nonlinearity: 𝑁𝑡 solves a fixed-point problem.

The model delivers multiple steady states when the implied mapping 𝑁 = N(𝐹, 𝑥, 𝐾) is suffi-
ciently nonlinear. Intuitively: i) when 𝐹 is low, A(𝐹) is low, so 𝑌/𝐾 is low; the economy saves
less in equilibrium, and the fee base for finance is small. Few intermediaries enter, congestion
is high, and 𝐹 fails to accumulate—a low-finance trap; ii) when 𝐹 is high, 𝑌/𝐾 is high; the
economy can sustain larger intermediation scale. Entry expands 𝑁 , congestion falls, financial
deepening accelerates, and high 𝐹 is self-sustaining.

To state this cleanly, define a stationary pair (𝑥∗, 𝐹∗) such that ¤𝑥 = ¤𝐹 = 0 and 𝑁 satisfies
Equation (16).2

Proposition 1 (Multiple steady states). Suppose A(𝐹) is given by Equation (8), financial
2Given the AK structure, levels of 𝐾 scale out along balanced paths, and the relevant stationary objects are

ratios and 𝐹.
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deepening follows Equation (13), and intermediation costs satisfy Equation (11)–(18). If: i)
fixed operating cost 𝑓 is large enough, ii) congestion curvature 𝜈 is large enough, and iii)
deepening is sufficiently state-dependent (large enough 𝜓 and/or 𝐹max not too small), then there
exist parameter values for which the stationary system admits three stationary points (𝑥∗, 𝐹∗): a
low-𝐹 stationary point, a middle threshold stationary point, and a high-𝐹 stationary point. The
low and high stationary points are locally stable, while the middle stationary point is unstable.

Proof. See Appendix. □

2.4 Phase diagram

Figure 1 depicts the phase diagram in the two-dimensional state space (𝐹, 𝑥), where 𝐹 is the
stock of financial development and 𝑥 ≡ 𝐶/𝐾 is the consumption–capital ratio. The arrows show
the direction of motion implied by the joint dynamics ( ¤𝐹, ¤𝑥), while the thick curves are the
two nullclines: the ¤𝑥 = 0 locus (consumption-growth balance) and the ¤𝐹 = 0 locus (financial
deepening balance). Their intersections constitute steady states.

Figure 1: Phase diagram in (𝐹, 𝑥) = 𝐶/𝐾 with multiple steady states

The ¤𝑥 = 0 locus is obtained from the household Euler condition together with the capital-
accumulation identity. Intuitively, along ¤𝑥 = 0 the consumption–capital ratio is exactly con-
sistent with the net return on capital: if (𝐹, 𝑥) lies above that locus, the model implies ¤𝑥 < 0
(consumption is high relative to capital, so 𝑥 falls); if (𝐹, 𝑥) lies below it, then ¤𝑥 > 0 (consump-
tion is low relative to capital, so 𝑥 rises). The ¤𝐹 = 0 locus collects points at which the forces
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that expand the financial system (learning-by-intermediation and entry/network effects) exactly
offset institutional depreciation.

In the plotted parameterization, the two nullclines intersect at three points: 𝑆1 : (𝐹, 𝑥) =

(0.147995, 0.077377), 𝑆2 : (𝐹, 𝑥) = (0.565835, 0.080908), 𝑆3 : (𝐹, 𝑥) = (1.034470, 0.078618).
The vector field around these intersections shows a standard pattern of multiple steady states: 𝑆1

and 𝑆3 behave as locally stable long-run outcomes, whereas 𝑆2 acts as a threshold (an unstable
steady state). In particular, trajectories starting with initial conditions to the left of the separatrix
implied by 𝑆2 drift toward the low-finance steady state 𝑆1, while initial conditions sufficiently
far to the right converge toward the high-finance steady state 𝑆3.

The existence of 𝑆1 reflects a low-finance trap. When 𝐹 is low, finance-augmented allocative
efficiency is weak, the effective return to accumulating capital is limited, and the scale of
intermediated saving is small. Entry is therefore muted, congestion is relatively severe, and
the feedback from intermediation activity to financial deepening remains too weak to raise 𝐹
persistently. The economy settles near a low 𝐹 level where deepening stalls.

By contrast, 𝑆3 is a high-finance regime. Once 𝐹 is sufficiently high, the economy generates
a larger intermediation base, entry expands, congestion costs are diluted, and the deepening
process becomes self-reinforcing. Financial development then remains high and the economy
converges to the steady state with large 𝐹.

The middle steady state 𝑆2 is best interpreted as a critical mass condition. Near 𝑆2, small adverse
perturbations (e.g., a temporary disruption to the financial system) push the economy back
toward 𝑆1, while small favorable perturbations (e.g., a coordinated expansion in intermediation
capacity) push it toward 𝑆3. This provides a sharp mechanism for why economies with similar
fundamentals can display persistent divergence in finance and macroeconomic performance.

The phase portrait also highlights that history matters: the same structural parameters can
generate different long-run outcomes depending on initial conditions. The key reason is the
nonlinearity embedded in the financial sector: fixed operating costs and congestion imply that,
at low levels of activity, the per-unit cost of intermediation is high and entry is unattractive;
at higher activity levels, entry becomes viable, congestion falls, and the marginal contribution
of intermediation to deepening rises. This generates the characteristic S-shaped deepening
dynamics and the triple intersection of ¤𝑥 = 0 and ¤𝐹 = 0.

The diagram suggests two empirically relevant implications. First, finance–growth data may
exhibit threshold effects: marginal improvements in finance can have small effects below the
critical region, but large effects once the economy is near or beyond the middle steady state.
Second, policy interventions that shift the ¤𝐹 = 0 locus downward/upward—for instance by
reducing operating costs of intermediation, improving enforcement, or lowering congestion—
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can eliminate the low-finance trap by removing the middle intersection, thereby making the
high-finance steady state globally attractive. In this sense, policies that expand intermediation
capacity and improve efficiency are most potent when they help the economy cross the critical
mass region around 𝑆2.

3 Conclusion

This paper studies how financial development and economic growth can become jointly self-
reinforcing. We build a parsimonious continuous-time general-equilibrium framework with
households, producers, and financial intermediaries in which financial development is an en-
dogenous stock. Finance raises allocative efficiency and therefore the effective return to capital
accumulation, but intermediation also absorbs real resources through fixed operating costs and
congestion-type losses. The central implication is a threshold mechanism: when the financial
system is small, per-unit intermediation costs are high and deepening is weak, so the economy
can be trapped in a low-finance, low-efficiency regime; once a critical mass is reached, entry
and learning-by-intermediation reduce congestion and accelerate deepening, generating a high-
finance, high-efficiency regime. The resulting phase diagram delivers multiple steady states in
a transparent way and highlights why similar economies can diverge for long periods.

Two natural extensions are left for future work. One is to introduce default risk and endogenous
crises to study whether the high-finance steady state is also more fragile. Another is to take
the model to the data by estimating deepening and congestion parameters using micro-level
intermediation cost measures and examining whether the implied threshold patterns match
cross-country and within-country evidence.
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Appendix

A Proof of Proposition 1

Step 0 (reduced 2D system): Let 𝑐𝑡 ≡ 𝐶𝑡/𝐾𝑡 and 𝑦(𝐹𝑡) ≡ 𝑌𝑡/𝐾𝑡 = 𝐴A(𝐹𝑡). Under Equation (8),

𝑦(𝐹) = 𝐴

(
𝐹

𝐹̄ + 𝐹

)𝜗
, 𝑦′(𝐹) > 0, lim

𝐹↓0
𝑦(𝐹) = 0, lim

𝐹↑∞
𝑦(𝐹) = 𝐴. (A.1)

Define the (per unit of capital) saving flow:

𝑠(𝐹, 𝑐) ≡ 𝑌 − 𝐶
𝐾

= 𝑦(𝐹) − 𝑐, and the saving rate 𝜎(𝐹, 𝑐) ≡ 𝑠(𝐹, 𝑐)
𝑦(𝐹) = 1 − 𝑐

𝑦(𝐹) .
(A.2)

Under free entry, aggregate intermediation revenue equals aggregate intermediation resource
costs. A convenient reduced-form implication of Equation (14)–(16) is that the resource cost
absorbed by the financial system is proportional to the intermediated scale 𝑌 − 𝐶:

C𝐹
𝐾

= 𝑚(𝐹) 𝑠(𝐹, 𝑐), 𝑚(𝐹) ≡ 𝜇B(𝐹) = 𝜇

(
𝐹

𝐹̄ + 𝐹

)𝜂
, (A.3)

with 𝑚(𝐹) ∈ (0, 𝜇), 𝑚′(𝐹) > 0, and lim𝐹↓0 𝑚(𝐹) = 0. This equality is the accounting
identity implied by Equation (16): total revenue 𝜇B(𝐹) (𝑌 − 𝐶) is dissipated into the operat-
ing/screening/congestion costs C𝐹 .

The household Euler equation and the capital accumulation identity yield the 2D system in
(𝐹𝑡 , 𝑐𝑡):

¤𝑐 = 𝑐
[

1
𝛾

(
𝑦(𝐹) − 𝛿 − 𝜌

)
−

(
𝑦(𝐹) − 𝑐 − 𝑚(𝐹) (𝑦(𝐹) − 𝑐) − 𝛿

)]
, (A.4)

¤𝐹 = 𝐹

[
𝜉 𝐺 (𝑁) 𝜎(𝐹, 𝑐)𝜓

(
1 − 𝐹

𝐹max

)
− 𝛿𝐹

]
, 𝐺 (𝑁) ≡

(
𝑁

𝑁 + 𝑁̄

)𝜔
∈ [0, 1). (A.5)

The key nonlinearity is that 𝑁 is pinned down endogenously by the entry condition, and (cru-
cially) can be multi-valued for given (𝐹, 𝑐) when congestion is sufficiently curved.

Step 1 (the ¤𝑐 = 0 locus is a graph 𝑐 = 𝑐(𝐹)): Fix 𝐹 > 0. Define the bracket term in Equation
(A.4) as Φ(𝐹, 𝑐) so that ¤𝑐 = 𝑐Φ(𝐹, 𝑐). On the economically relevant region 𝑐 > 0 and
𝑠(𝐹, 𝑐) = 𝑦(𝐹) − 𝑐 > 0, the equation ¤𝑐 = 0 is equivalent to Φ(𝐹, 𝑐) = 0, i.e.

1
𝛾

(
𝑦(𝐹) − 𝛿 − 𝜌

)
= 𝑦(𝐹) − 𝑐 − 𝑚(𝐹)

(
𝑦(𝐹) − 𝑐

)
− 𝛿 = (1 − 𝑚(𝐹))

(
𝑦(𝐹) − 𝑐

)
− 𝛿. (A.6)
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Solving Equation (A.6) yields a unique 𝑐 = 𝑐(𝐹):

𝑐(𝐹) = 𝑦(𝐹) −
𝛿 + 1

𝛾

(
𝑦(𝐹) − 𝛿 − 𝜌

)
1 − 𝑚(𝐹) . (A.7)

Because 𝑦(𝐹) and 𝑚(𝐹) are 𝐶1 and 𝑚(𝐹) < 1 (choose 𝜇 < 1), 𝑐(𝐹) is continuous (indeed 𝐶1)
on any compact subset of (0,∞) where the interior condition 0 < 𝑐(𝐹) < 𝑦(𝐹) holds. Hence
the stationary system can be reduced to a one-dimensional condition on 𝐹 along 𝑐 = 𝑐(𝐹).

Step 2 (two-entry equilibria: the entry equation can have two positive roots in 𝑁): Suppress
effort for a moment; we return to it at the end of this step. Under Equation (11) with congestion
Φ(𝑥) = 𝑥𝜈, the entry condition (16) at given (𝐹, 𝑐) can be written (in per-unit-of-capital terms)
as:

𝑚(𝐹) 𝑠(𝐹, 𝑐) = 𝑓 𝑁 + 𝜒
(
𝑠(𝐹, 𝑐)
𝑁 + 𝑁

)𝜈
𝑠(𝐹, 𝑐). (A.8)

Let 𝑆 ≡ 𝑠(𝐹, 𝑐) > 0 and define:

𝐻 (𝑁; 𝐹, 𝑆) ≡ 𝑓 𝑁 + 𝜒 𝑆𝜈+1(𝑁 + 𝑁)−𝜈 − 𝑚(𝐹)𝑆. (A.9)

Then Equation (A.8) is 𝐻 (𝑁; 𝐹, 𝑆) = 0 for 𝑁 ≥ 0. Note that:

𝐻 (0; 𝐹, 𝑆) = 𝜒 𝑆𝜈+1𝑁−𝜈 − 𝑚(𝐹)𝑆, (A.10)

lim
𝑁→∞

𝐻 (𝑁; 𝐹, 𝑆) = +∞ (because 𝑓 > 0). (A.11)

Moreover,
𝜕𝐻

𝜕𝑁
= 𝑓 − 𝜒𝜈 𝑆𝜈+1(𝑁 + 𝑁)−(𝜈+1) . (A.12)

Thus 𝜕𝐻/𝜕𝑁 → −∞ as 𝑁 ↓ 0 when 𝜈 is large and 𝑆/𝑁 is not too small, while 𝜕𝐻/𝜕𝑁 → 𝑓 > 0
as 𝑁 → ∞. Hence 𝐻 (·; 𝐹, 𝑆) has a unique critical point (a unique global minimum) at
𝑁 = 𝑁★(𝐹, 𝑆) satisfying 𝜕𝐻/𝜕𝑁 = 0:

𝑁★ + 𝑁 = 𝑆

(
𝜒𝜈

𝑓

) 1
𝜈+1

. (A.13)

Evaluating 𝐻 at 𝑁★ gives, after algebra,3

𝐻 (𝑁★; 𝐹, 𝑆)
𝑆

= (𝜈 + 1)
(
𝑓 𝜈𝜒

𝜈𝜈

) 1
𝜈+1

︸                ︷︷                ︸
≡ 𝑚̄(𝜈, 𝑓 ,𝜒)

− 𝑚(𝐹) −
𝑓 𝑁

𝑆
. (A.14)

3Substitute Equation (A.13) into Equation (A.9) and simplify using the identity 𝑓 𝛼 + 𝜒𝛼−𝜈 = (𝜈 +
1) ( 𝑓 𝜈𝜒/𝜈𝜈)1/(𝜈+1) for 𝛼 = (𝜒𝜈/ 𝑓 )1/(𝜈+1) .
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Now fix (𝜈, 𝑓 , 𝜒, 𝑁) and consider 𝑆 not too small so that 𝑓 𝑁/𝑆 is negligible. If

𝑚(𝐹) > 𝑚̄(𝜈, 𝑓 , 𝜒), (A.15)

then 𝐻 (𝑁★; 𝐹, 𝑆) < 0 for sufficiently large 𝑆, while 𝐻 (0; 𝐹, 𝑆) can be made positive by taking
𝜈 large (so the congestion term 𝜒𝑆𝜈+1𝑁−𝜈 explodes at 𝑁 = 0 when 𝑆/𝑁 > 1). Together with
𝐻 (𝑁) → ∞ as 𝑁 → ∞, the intermediate value theorem implies that 𝐻 (·; 𝐹, 𝑆) = 0 has two
positive roots, say

0 < 𝑁𝐿 (𝐹, 𝑆) < 𝑁★(𝐹, 𝑆) < 𝑁𝐻 (𝐹, 𝑆). (A.16)

Hence for a nonempty region of (𝐹, 𝑆), the entry condition admits two distinct equilibrium levels
of intermediary activity, a low-entry and a high-entry equilibrium. The region is nonempty
because 𝑚(𝐹) is continuous and increasing in 𝐹, with 𝑚(0) = 0 and lim𝐹→∞𝑚(𝐹) = 𝜇;
choosing parameters so that 𝜇 > 𝑚̄(𝜈, 𝑓 , 𝜒) ensures that (A.15) holds for all sufficiently large
𝐹.

Role of effort: Under Equation (18), congestion is multiplied by exp(−𝜁𝑒) where 𝑒 is chosen by
intermediaries (or by a regulator) via a strictly convex trade-off as in Equation (19). This simply
replaces 𝜒 by an effective 𝜒̃(𝐹, 𝑆, 𝑁) ≡ 𝜒 exp(−𝜁𝑒★(𝐹, 𝑆, 𝑁)) with 𝜒̃ ∈ (0, 𝜒] and continuous
in (𝐹, 𝑆, 𝑁). The shape properties above (unique interior minimum and the possibility of two
roots) are preserved, because 𝐻 (𝑁) remains the sum of a linear term 𝑓 𝑁 and a decreasing-in-𝑁
congestion term with sufficiently steep curvature when 𝜈 is large.

Step 3 (reducing the steady-state problem to a scalar equation): A stationary point (𝐹∗, 𝑐∗)
satisfies ¤𝑐 = ¤𝐹 = 0 with 𝐹∗ > 0 and 𝑐∗ > 0. From Step 1, 𝑐∗ = 𝑐(𝐹∗), and therefore the saving
rate at a stationary point is:

𝜎̄(𝐹) ≡ 𝜎(𝐹, 𝑐(𝐹)) = 1 − 𝑐(𝐹)
𝑦(𝐹) =

𝑦(𝐹) − 𝑐(𝐹)
𝑦(𝐹) . (A.17)

Plugging 𝑐 = 𝑐(𝐹) into Equation (A.5) shows that stationary 𝐹∗ must satisfy:

Ψ(𝐹; 𝑁) ≡ 𝜉 𝐺 (𝑁) 𝜎̄(𝐹)𝜓
(
1 − 𝐹

𝐹max

)
− 𝛿𝐹 = 0, (A.18)

where 𝑁 must also solve the entry condition (A.8) evaluated at (𝐹, 𝑐(𝐹)). Because Step 2
implies that for some (𝐹, 𝜎̄(𝐹)) there exist two feasible 𝑁 values, (A.18) can hold at different
𝐹’s under different entry branches.

Step 4 (existence of three stationary points): Define the two branch functions on any interval
where two entry equilibria exist:

𝑁𝐿 (𝐹) ≡ 𝑁𝐿
(
𝐹, 𝑆(𝐹)

)
, 𝑁𝐻 (𝐹) ≡ 𝑁𝐻

(
𝐹, 𝑆(𝐹)

)
, 𝑆(𝐹) ≡ 𝑦(𝐹) − 𝑐(𝐹). (A.19)
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By the implicit function theorem (since 𝜕𝐻/𝜕𝑁 ≠ 0 at simple roots), 𝑁𝐿 (𝐹) and 𝑁𝐻 (𝐹) are
continuous on that interval.

Consider the scalar drift functions associated with each entry branch:

Ψ𝐿 (𝐹) ≡ Ψ
(
𝐹; 𝑁𝐿 (𝐹)

)
, Ψ𝐻 (𝐹) ≡ Ψ

(
𝐹; 𝑁𝐻 (𝐹)

)
. (A.20)

We now show that one can choose parameter values (consistent with the proposition’s qualitative
restrictions) such that Ψ𝐿 has two zeros and Ψ𝐻 has one zero, implying three stationary points
in total.

(i) Behavior at low 𝐹. For 𝐹 sufficiently small, 𝑚(𝐹) is close to zero, so intermediation
revenue is too small to cover fixed costs; the only feasible entry outcome is 𝑁 = 0 (no active
intermediaries). Then 𝐺 (𝑁) = 0 and Equation (A.5) implies:

¤𝐹 ≈ −𝛿𝐹𝐹 < 0, ⇒ Ψ(𝐹; 0) = −𝛿𝐹 < 0. (A.21)

Hence the deepening drift is negative at low 𝐹.

(ii) Behavior near the upper bound 𝐹max. For any bounded 𝑁 and any 𝜎̄(𝐹) ∈ [0, 1],

lim
𝐹↑𝐹max

Ψ(𝐹; 𝑁) = −𝛿𝐹 < 0, (A.22)

because
(
1 − 𝐹/𝐹max) → 0. Thus the deepening drift is negative sufficiently close to 𝐹max.

(iii) Creating an interior region where Ψ > 0. Since 𝐺 (𝑁) is increasing in 𝑁 and 𝑁𝐻 (𝐹) >
𝑁𝐿 (𝐹) whenever both exist,

0 ≤ 𝐺
(
𝑁𝐿 (𝐹)

)
< 𝐺

(
𝑁𝐻 (𝐹)

)
< 1. (A.23)

Choose 𝜈 large so that the entry equation admits two roots on a nondegenerate interval of 𝐹
(Step 2), and choose 𝜓 and 𝜉 large enough so that for some interior 𝐹 = 𝐹̃ on the high-entry
branch,

Ψ𝐻 (𝐹̃) = 𝜉 𝐺
(
𝑁𝐻 (𝐹̃)

)
𝜎̄(𝐹̃)𝜓

(
1 − 𝐹̃

𝐹max

)
− 𝛿𝐹 > 0. (A.24)

This is always feasible because the first term in Equation (A.24) scales linearly in 𝜉 and can
be made arbitrarily large by increasing 𝜉 (holding other parameters fixed), while remaining
consistent with a bounded 𝐺 (·) and 𝜎̄(·) ∈ (0, 1).

(iv) Three crossings. Combine Equations (A.21), (A.22), and (A.24). By continuity of Ψ𝐻 (𝐹)
on the interval where the high-entry root exists, the intermediate value theorem implies that
Ψ𝐻 (𝐹) = 0 has at least one solution 𝐹∗

3 in (𝐹̃, 𝐹max). This delivers a high-finance stationary

15



point (𝐹∗
3 , 𝑐(𝐹

∗
3 )).

Next, because 𝑁𝐿 (𝐹) is strictly smaller, the term 𝜉𝐺 (𝑁𝐿 (𝐹))𝜎̄(𝐹)𝜓 (1 − 𝐹/𝐹max) can be made
to form a smaller hump as a function of 𝐹, while still being positive in an intermediate region
(by state dependence 𝜓 and saturation 𝐹max). Concretely, choose parameters such that there
exist 0 < 𝐹1 < 𝐹2 < 𝐹

max (in the low-entry existence region) with

Ψ𝐿 (𝐹1) > 0, Ψ𝐿 (𝐹2) < 0, (A.25)

while Ψ𝐿 (𝐹) remains negative for 𝐹 sufficiently close to 0 (by Equation (A.21) in the no-entry
region). Then continuity implies there exist two distinct solutions 𝐹∗

1 ∈ (0, 𝐹1) and 𝐹∗
2 ∈ (𝐹1, 𝐹2)

such that Ψ𝐿 (𝐹∗
1 ) = Ψ𝐿 (𝐹∗

2 ) = 0. These yield a low-finance stationary point (𝐹∗
1 , 𝑐(𝐹

∗
1 )) and

an intermediate stationary point (𝐹∗
2 , 𝑐(𝐹

∗
2 )). Together with the high-entry root 𝐹∗

3 , we obtain
three stationary points.4

Step 5 (local stability classification): Linearize the planar system (A.4)–(A.5) around a stationary
point (𝐹∗, 𝑐∗), with 𝑐∗ = 𝑐(𝐹∗) and Ψ(𝐹∗; 𝑁∗) = 0. Let 𝐽∗ denote the Jacobian:

𝐽∗ =

(
𝜕𝐹 ¤𝐹 𝜕𝑐 ¤𝐹
𝜕𝐹 ¤𝑐 𝜕𝑐 ¤𝑐

)
(𝐹∗,𝑐∗)

. (A.26)

At any interior stationary point (𝐹∗ > 0, 𝑐∗ > 0, 𝑐∗ < 𝑦(𝐹∗)), the partial derivatives satisfy the
sign pattern:

𝜕𝑐 ¤𝐹 < 0, 𝜕𝐹 ¤𝑐 > 0, 𝜕𝑐 ¤𝑐 > 0. (A.27)

The first inequality follows because ¤𝐹 is increasing in the saving rate 𝜎 = 1− 𝑐/𝑦, so increasing
𝑐 lowers 𝜎 and reduces deepening. The second follows because higher 𝐹 increases 𝑦(𝐹) and
therefore raises the net return environment in Equation (A.4). The third follows directly from
Equation (A.4) because, holding 𝐹 fixed, raising 𝑐 reduces saving and raises 𝑐 further (the ratio
𝑐 = 𝐶/𝐾 is a jump/control variable; saddle-path stability is the economically relevant notion).

Now note that at a stationary point, ¤𝐹 = 𝐹 · Ψ(𝐹; 𝑁) with Ψ(𝐹∗; 𝑁∗) = 0, so

𝜕𝐹 ¤𝐹
���
∗
= 𝐹∗ · 𝜕𝐹Ψ(𝐹; 𝑁)

���
∗
, 𝜕𝑐 ¤𝐹

���
∗
= 𝐹∗ · 𝜕𝑐Ψ(𝐹; 𝑁)

���
∗
< 0. (A.28)

Hence the sign of 𝜕𝐹 ¤𝐹 is governed by 𝜕𝐹Ψ. Because the middle stationary point is constructed
as a threshold where the deepening drift crosses from increasing to decreasing regimes, we can

4Existence of parameter values satisfying Equation (A.25) is straightforward because 𝜎̄(𝐹) and (1 − 𝐹/𝐹max)
are continuous, 𝜎̄(𝐹) can be made sharply state-dependent through a large 𝜓, and the amplitude difference between
branches is controlled by 𝐺 (𝑁𝐿) versus 𝐺 (𝑁𝐻 ), which becomes large when congestion curvature 𝜈 is large and
fixed costs 𝑓 are nontrivial.
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choose parameters (large 𝜈 and 𝜓) so that

𝜕𝐹 ¤𝐹
���
𝑆1
< 0, 𝜕𝐹 ¤𝐹

���
𝑆3
< 0, 𝜕𝐹 ¤𝐹

���
𝑆2
> 0, (A.29)

i.e., the deepening drift is locally mean-reverting at the low and high stationary points but locally
self-reinforcing at the intermediate point.

Given Equations (A.27)–(A.29), one can ensure saddle-path stability at 𝑆1 and 𝑆3 as follows.
The determinant of 𝐽∗ is:

det(𝐽∗) = (𝜕𝐹 ¤𝐹) (𝜕𝑐 ¤𝑐) − (𝜕𝑐 ¤𝐹) (𝜕𝐹 ¤𝑐). (A.30)

Because (𝜕𝑐 ¤𝐹) (𝜕𝐹 ¤𝑐) < 0 by Equation (A.27), the second term in (A.30) is positive. Thus det(𝐽∗)
is negative (a saddle) whenever the negative product (𝜕𝐹 ¤𝐹) (𝜕𝑐 ¤𝑐) dominates in magnitude:

|𝜕𝐹 ¤𝐹 | 𝜕𝑐 ¤𝑐 > −(𝜕𝑐 ¤𝐹) (𝜕𝐹 ¤𝑐). (A.31)

Condition (A.31) is satisfied when the 𝐹-dynamics are sufficiently steep locally, which is exactly
what large congestion curvature 𝜈 (making 𝑁 and hence 𝐺 (𝑁) highly nonlinear) and large state
dependence 𝜓 (amplifying the response to the saving rate) accomplish. Hence 𝑆1 and 𝑆3 can be
made saddle-path stable.

At the intermediate point 𝑆2, 𝜕𝐹 ¤𝐹 > 0 by Equation (A.29). With 𝜕𝑐 ¤𝑐 > 0, the trace is positive
whenever 𝜕𝐹 ¤𝐹 is not too small, and det(𝐽∗) can be made positive by making 𝜕𝐹 ¤𝐹 sufficiently
large (again feasible under large 𝜈 and 𝜓). In that case both eigenvalues of 𝐽∗ are positive and
𝑆2 is an unstable node (a threshold). This establishes the stated stability classification in the
economically relevant sense: the low and high stationary points admit locally stable manifolds
(saddle-path stability), while the middle point is unstable.

Conclusion. Steps 1–4 show that there exist parameter values satisfying the proposition’s
qualitative restrictions under which the system admits three stationary points. Step 5 shows that,
under the same restrictions (and by strengthening steepness through large 𝜈 and 𝜓), the low and
high stationary points are saddle-path stable while the middle point is unstable. This completes
the proof.

B Interpretation of Parameters

For reference, below is a compact interpretation of all parameters used in the model.

17



Households.

• 𝜌: subjective discount rate; higher 𝜌 lowers saving incentives and reduces long-run
consumption growth given returns.

• 𝛾: CRRA curvature (inverse IES); higher 𝛾 makes consumption growth less responsive
to changes in returns.

• 𝛿: physical capital depreciation rate.

Production and finance-augmented efficiency.

• 𝐴: baseline productivity parameter; scales output per unit of effective capital.

• A(𝐹): allocative-efficiency term increasing in financial development.

• 𝐹̄: normalization that controls the “half-saturation” level of finance; when 𝐹 = 𝐹̄, the
fraction 𝐹/(𝐹̄ + 𝐹) equals 1/2.

• 𝜗: curvature/elasticity of allocative efficiency with respect to 𝐹; larger 𝜗 makes output
more sensitive to changes in 𝐹 at low-to-intermediate levels.

• 𝐹max: upper bound on sustainable financial development (technological/institutional fron-
tier).

Intermediation costs and congestion.

• 𝑓 : fixed operating cost per intermediary (branches, compliance, platform fixed costs).
Larger 𝑓 makes entry harder and strengthens threshold effects.

• 𝜅: marginal cost scale of screening/monitoring intensity. Larger 𝜅 makes effort more
expensive.

• 𝜒: scale of real misallocation/congestion losses in finance (resources wasted in poorly
screened intermediation).

• 𝜈: curvature of congestion; larger 𝜈 means congestion increases rapidly when per-
intermediary load rises, which is a key force behind multiple entry equilibria.

• 𝑁: baseline capacity term preventing singularity at 𝑁 = 0; interpretable as minimal
backbone infrastructure.

• 𝜁 : effectiveness of effort in mitigating congestion losses; larger 𝜁 means monitoring is
more powerful at reducing misallocation.
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Financial deepening (law of motion for 𝐹).

• 𝜉: speed of financial deepening; higher 𝜉 means a given level of activity/entry translates
faster into institutional and technological improvements.

• 𝑁̄: saturation parameter for the entry/network channel in Equation (13); larger 𝑁̄ implies
diminishing returns to additional intermediaries kick in later.

• 𝜔: elasticity of deepening with respect to network size/entry; higher 𝜔 strengthens
feedback from entry to 𝐹.

• 𝜓: elasticity of deepening with respect to intermediation intensity (saving rate). Higher
𝜓 makes 𝐹 more sensitive to changes in 𝐶/𝑌 and therefore strengthens nonlinearity.

• 𝛿𝐹 : depreciation/obsolescence rate of financial development (institutional decay, techno-
logical obsolescence, erosion of trust).

Entry revenue side (reduced form).

• 𝜇: revenue scale of intermediation (fee base per unit of intermediated saving). Larger 𝜇
makes entry easier.

• B(𝐹): feasibility/fee-base term increasing in 𝐹 (better enforcement and information
increase scalable intermediation revenue).

• 𝜂: curvature of B(𝐹); larger 𝜂 implies revenues increase more sharply with 𝐹 when 𝐹 is
low.

C Remarks for implementation and empirical mapping

Link to standard finance measures. In applications, 𝐹𝑡 can be mapped to observed proxies
such as private credit-to-GDP, payment-system penetration, or a composite financial develop-
ment index. The model’s ¤𝐹 equation (13) suggests that deepening is faster when: i) i) the
financial system is actively used (high saving/intermediation intensity) and ii) the intermediary
network is sufficiently dense.

Why multiplicity is empirically plausible. The coexistence of fixed costs ( 𝑓 𝑁) and congestion
(S1+𝜈/(𝑁 + 𝑁)𝜈) captures a common pattern: when the system is small, intermediation is
expensive and error-prone; once scale and entry expand, per-unit costs fall and reliability
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improves, which accelerates deepening. This is a natural source of threshold effects and multiple
equilibria in finance-growth data.
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